SnS academy

a fingerprint school
Sincerity, Nobility and Service

Class: XII
 MODEL EXAM-1-Nov-19-Mathematics
 Marks: 80

Date: 18.11.19
Time: 3 hrs

General Instructions:

(i) All the questions are compulsory.
(ii) The question paper consists of 36 questions divided into 4 sections A, B, C , and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION-A

Choose the most suitable answer:

1. The value of $\int_{-2}^{2}\left(x^{3}+x\right) d x$
(a) $1 / 2$
(b) 12
(c) 0
(d) 6
2. $\int_{1}^{e} \log x d x=$
(a) 1
(b) e-1
(c) $\mathrm{e}+1$
(d) 0
3. $\int_{0}^{2 a} f(x) d x=$
(a) $\int_{0}^{a} f(x) d x+\int_{0}^{a} f(a-x)$
(b) $\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x)$
(c) $\int_{0}^{a} f(x) d x+\int_{0}^{2 a} f(a-x)$
(d) $\int_{0}^{a} f(x) d x-\int_{0}^{a} f(a-x)$
4. The area bounded by the ellipse $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{16}=1$ is
(a) 144π
(b) 12π
(c) 9π
(d) 16π
5. Write the order and degree of the differential equation $4\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\left(\frac{d y}{d x}\right)^{7 / 2}$ is
(a) 2, 1
(b) 2,2
(c) 2, 4
(d) 2,5
6. Write the solution of the differential equation $\left(3 x^{2}+1\right) \frac{d x}{d y}=x^{3}+x$ is
(a) $\log \left(3 x^{2}+1\right)=y+c$
(b) $\log \left|x^{3}+x\right|=y+c$
(c) $\frac{x^{3}}{4}+x^{2}=c$
(d) none
7. The degree of the differential $\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$, is
(a) 3
(b) 2
(c) 1
(d) not defined.
8. The number of arbitrary constants in the particular solution of a differential equation of third is
(a) 3
(b) 2
(c) 1
(d) 0
9. The integrating factor of the differential equation $x \frac{d y}{d x}-y=2 x$, is
(a) e^{-x}
(b) e^{-y}
(c) $1 / \mathrm{x}$
(d) x
10. The vector $\cos \alpha \cos \beta \vec{i}+\cos \alpha \sin \beta \vec{j}+\sin \alpha \vec{k}$ is a
(a) null vector
(b) unit vector
(c) constant vector
(d) none
11. Find the values of x and y so that the vectors $2 \vec{i}+3 \vec{j}$ and $x \dot{i}-y \vec{j}$ are equal.
12. ABCD is a parallelogram with AC and BD as diagonals. Then find $\overrightarrow{A C}-\overrightarrow{B D}$.
13. Find the projection of vector $i+j+k$ on vector j.
14. If \vec{a} and \vec{b} represents the diagonals of a rhombus, then find $\vec{a} \cdot \vec{b}$.
15. If a line makes an angle $\frac{\pi}{3}, \frac{\pi}{4}$ with x-axis and y-axis respectively, then find the angle made by the line with z -axis.
16. The angle between the planes $2 x-y+z=6$ and $x+y+2 z=3$ is \qquad
17. The distance between the planes $2 x+2 y-z+2=0$ and $4 x+4 y-2 z+5=0$ is \qquad
18. The equation of the plane which cuts equal intercepts of unit length on the co-ordinates axes is \qquad
19. Find the intercepts of the plane $4 x+2 y-3 z+24=0$.
20. Write the unit normal to the plane $x-3 y+5 z=7$.

SECTION-B

Answer the following:

21. Find the integral $\int(2 x-\cos 4 x) d x$. (OR) Integrate $\int_{-\pi / 2}^{\pi / 2} \sin ^{3} x d x$.
22. Verify that the function $y=e^{-3 x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$.

Find the integrating factor of the differential equation $x \frac{d y}{d x}+2 y=x^{2}$.
23. Find the direction cosines of the vector joining the points $A(1,2,-3)$ and $B(-1,-2,1)$, directed from A to B.
24. If $\vec{a}=5 \dot{i}-\vec{j}-3 \vec{k}$ and $\vec{b}=\vec{i}+3 \vec{j}-5 \vec{k}$, then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.
25. Find the angle between the vectors $\vec{i}-2 \vec{j}+3 \vec{k}$ and $3 \vec{i}-2 \vec{j}+\vec{k}$ (use dot product)
26. The Cartesian equation of a line is $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. Find the vector equation of a line.

SECTION-C

Answer the following:

27. Integrate : $\int \sqrt{\sin 2 x} \cos 2 x d x$.
28. Find $\int \frac{3 x-2}{(x+1)^{2}(x+3)} d x$ (OR) $\int e^{x} \sin x d x$.
29. Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
30. Show that the differential equation $(x-y) \frac{d y}{d x}=x+2 y$ is homogeneous and solve it.
31. Find the shortest distance between the lines $\vec{r}=\vec{i}+\vec{j}+\lambda(2 \vec{i}-\vec{j}+\vec{k})$ and $\vec{r}=2 \vec{i}+\vec{j}-\vec{k}+\mu(3 \dot{i}-5 \vec{j}+2 \vec{k})$.
32. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$. (OR)
Find the equations of the planes that passes through three points $(1,1,-1),(6,4,-5),(-4,-2,3)$.

SECTION-D

Answer the following:

33. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and inside of the parabola $y^{2}=4 x$. (OR)

Find the area of the region $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$
34. Find the area bounded by the curves $y=x^{3}$ and $y=x$.
35. In a bank, principal increases continuously at the rate of 5% per year. In how many years Rs. 1000 double itself? (OR)
Solve: $\frac{d x}{d y}+y \cot x=2 x+x^{2} \cot x(x \neq 0)$ given that $\mathrm{y}=0$ and $x=\frac{\pi}{2}$.
36. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z=-5$.

